1. What is Technology?

 

Technology is a gift of God.
After the gift of life it is perhaps
the greatest of God’s gifts.
It is the mother of civilizations,
of arts and of sciences.

— Freeman Dyson

The Hawaiian bobtail squid would be easy prey on bright moonlit nights if it cast a shadow. But it does not. Instead, the squid projects simulated moonlight on the ocean floor where predators wait. How does a squid extend its abilities to include shining like the moon?  It gathers and eats bacteria called Vibrio fischeri. These communicate among themselves with chemical signaling molecules so they know how many of their peers have gathered, and when their population hits a critical density, or quorum, they glow. The squid packs these glowing bacteria into an organ with shutters, lenses, and colored filters so that it can simulate a wide range of moonlight, keeping the squid virtually invisible to predators. Does ingesting and using luminous bacteria qualify as using technology?

Vibrio fischeri have cousins named Vibrio cholerae, the water-borne bacteria that cause cholera. While the Hawaiian bobtail squid shines light with the help of Vibrio fischeri, the Vibrio cholerae bacteria actually change their environment. They enter the human stomach when infected water is consumed. At first it might appear that they are doomed for, unlike the benign bacteria found in healthy stomachs, Vibrio cholerae are killed by human digestive acids. Only one in a million survives. The survivors attach themselves firmly to folds in the lining of the small intestine and then inject a bit of toxin. The stomach’s reaction to this threatened tissue damage is to flush the area with water, diluting the acid, washing away the other bacteria, and leaving the invader still clinging tightly. The Vibrio cholera procreate and, evolved to avoid putting all its eggs in one stomach, some ride the newly created river—diarrhea—in search of new hosts. All this flushing water dehydrates the human host and, untreated, cholera can result in death within hours. Is Vibrio cholerae acting as a technology because it changes its environment?

Is a sea otter smashing shellfish with rocks using technology?  A chimpanzee smashing open nuts with rocks?  A crow dipping for insects with sticks?  Or a beaver damming streams to form ponds?  Does instinctual use count?  Or is being able to manipulate and share information about their tools—and being aware of these processes—necessary?  It all depends on how we define technology.

The root meaning of technology, from Greek, is the study of a craft or art. John Lienhard, radio host and professor of both engineering and history, suggests that our species should not be called homo sapiens (the wise ones), but homo technologicus (those who use technology). He defined technology as “the knowledge of making things.”  In his book The Technological Society, Jacques Ellul defined technology in relation to art and science:

 

Art is concrete & subjective

 

Science is abstract & objective

 

Technology is concrete & objective

 

In this chapter, we explore several slightly more specific and practical definitions   First we consider “any tool that extends our abilities,” seeing how levers, pole vaults, and the Space Shuttle fit. Then we follow a story from one kind of rock that became important more than 2500 years ago to another kind of rock that has completely transformed our world in the past half century. Those two rocks and several technologies in between extended our ability to conduct commerce, which illustrates our second definition: “systems of tools.”  Homer’s Iliad and the phenomenon of software piracy bring us to a third definition of “information as technology.”  There is no universally accepted and timeless definition, so we test our proposals against a variety of inventions and developments to see if they seem to make sense. In the last section we show why “applied science,” although found in some dictionaries, comes up short for our purposes.

Definitions of technology help us to decide where to look for patterns. Too broad a scope may have few or no patterns that span it. Too narrow a scope hides patterns. Something true for televisions alone, for instance, is not nearly as valuable as a pattern common to prehistoric implements, agricultural devices, industrial machines, computer equipment, genetic tools, and even less tangible things, such as monetary systems. We want a tool for understanding and evaluating the technology of the future, so we look at technology of today and yesterday to get a feel for just what technology is.

 

Tools that extend our ability

How high can you jump?  The Olympic record for the high jump is about eight feet. If you allow a simple technology like a pole, the record vaults to nearly 20 feet. Suppose you took a very large, hollow pole, and fill it with rocket fuel, add control systems, and provide a pressurized control module on top. Then, the record increases to nearly 300,000 miles with a trip around the moon.

Of course looping around the moon is not an Olympic event, but it does show that technology, perhaps by definition, extends our abilities. Testing out this definition, we will range from the first lever all the way to the bicycle and the Space Shuttle.

Unlike the moon rocket, the pole vault is simply a lever. Levers were in use long before Archimedes described them in 260 BCE, but he gets credit because his is the earliest known description. Long, long ago after a storm knocked down trees, one of our ancestors may have climbed atop one of them. With a lucky arrangement of trees, that stunned person would have lifted a massive tree off the ground.

The right arrangement involves three trees:  lever, fulcrum, and load. The load tree lies atop one end of the lever tree, which lies across the fulcrum tree and extends up into the air. If the lever extends far enough from the fulcrum, the small force of the person’s weight will lift the much greater weight of the load. Another reason Archimedes gets credit for the lever might be his memorable proclamation: “Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.”  Long before television, he understood sound bites.

If the fulcrum is near your end of the lever, you find it hard to push the lever, but the other end moves much farther than does yours. Consider the garden rake left lying so that you step on the tines, propelling the long wooden handle towards your forehead at speed far greater than the descent of your foot.

If the fulcrum is near the far end of the lever, you find it easy to push the lever, but the other end moves much less than does yours. Consider a hammer turned around to pull nails out of a board. The claw end of the hammer moves an inch or two with great force while the wooden handle that you grasp moves six inches or more with less force. Depending on where you place the fulcrum, you trade force for distance or distance for force.

We refined trading force for distance with the bicycle. Equipped with multiple gears, it allows you to crawl up a steep slope or speed on a level surface. The bicycle incorporates levers into the crank arms, which connect the pedals to an axle. Chain and gears connect this to the rear wheel. The bicycle is a simple, yet highly efficient, technology that extends our ability to move. With a bicycle, a person can cover 200 miles in less than half a day, or ride across the U.S. in less than 10 days. Well, not a typical person, but some do take their recreation to these extremes.

A couple of bicycle mechanics named Orville and Wilbur Wright combined the ancient technologies of lever and wheel with a newer one, the airfoil, to make a practical airplane. With some significant upgrades (such as rocket propellant), the airplane became the Space Shuttle attached to the modified pole we described at the beginning of this section.

Tools that extend our abilities is a broad a definition, and would include television, which extends our ability of seeing far distances, and the DVD player, which extends our ability to see to times past. This definition can also include destructive ends. On September 11, 2001, a few violent people used a very old technology (knives…well, technically, box cutters), to take control of another technology (four large jet airplanes). The airplanes, with their load of refined aviation fuel, caused far more damage than a band of prehistoric terrorists wielding knives could have. Even a drunk driver, erratically maneuvering a ton of steel and glass, has his or her ability to do harm greatly extended.

If we think of a tool as an isolated object—such as an airplane, car, or television—then we are still missing something essential. Take almost any technology away from its infrastructure and it will fail. A car transported back in time 500 years would have few, if any, suitable roads, no source of gasoline, no source of replacement parts, and nobody would know how to operate or repair it. This has been a stumbling block in developing and deploying hydrogen fueled cars:  no infrastructure of refueling stations. Similarly, a television in the 16th century would be useless. So technology must be more than individual objects; it must also include systems.

 

In addition to tools and devices, we should include systems and methods of organization…Any collection of processes that together make up a new way to magnify our power or facilitate the performance of some task can be understood as a technology.

– Al Gore

 

Systems:  The Intangible Levers

A very special stone was discovered in the kingdom of Lydia  (now Turkey) in 550 BC. A naturally occurring mineral containing silicon, this stone, called a touchstone, could reveal the purity of gold. As a result a new technology was invented. The “new technology” was not the stone itself, but the knowledge surrounding its use:

  • Rubbing pure gold against a touchstone made a yellow mark.
  • Rubbing gold diluted with silver made a white mark.
  • Rubbing gold diluted with copper made a red mark.

This tool made possible a system of money by extending our ability to ascertain quality. The government minted gold coins imprinted with their guarantee of value…which could be tested by weighing the coin and rubbing it against a touchstone. Money—when trusted—extends our ability to trade. Think of it as an intangible lever.

Can you imagine trading without money?  Suppose you wanted to trade goats for corn, but the person who had the corn you wanted was uninterested in goats?  You would have to find someone who did want goats and would trade something of interest to the corn seller. Money could buy anything for sale, and, unlike goats, money did not become sick or die on your way to trade. While you could say that the coin, itself, is the technology that extends our ability to conduct commerce, the coin is just one component of a system—one that includes the government guarantee, touchstones, moneychangers, and knowledge among those who would accept it as payment.

That system became more sophisticated with the check or credit note, invented in 14th century Italy. It allowed international trade without packing along large amounts of money. Being at the center of Mediterranean trade routes, Italy harbored the banks that issued credit notes. Merchants purchased notes that the bank guaranteed could be exchanged for a set amount of a foreign currency in a specific city. On the dangerous roads and sea routes that the merchants traveled, robbers were interested in goods and money, not written notes.

The importance of the system, including knowledge and trust, is much more important with credit notes than with coins, which could presumably be melted down into something of value outside the system. The credit note and paper currency relied on information. Who issued it?  How much is it worth?  What are the terms for its redemption?  The U.S. dollar continues to display signatures of government authorities and the assurance that it is good for all debts, public and private.

The system becomes even more sophisticated in credit card technology. Predicted in the 19th century novel Looking Backward, but made practical in the 1950s, the credit card allowed us to trade without carrying large amounts of cash or finding someone who would trust our check. Information from the credit card (the number) and the transaction (the amount) are transmitted to a central computer, which keeps track of credit limits, spending patterns, and stolen cards.

“Smart cards” further extend our ability to conduct commerce by carrying all that information on the card itself. Insert a smart card into an automated teller machine and “load” it with money from your bank account. What makes a smart card “smart” is an embedded silicon microchip that stores encrypted information about how much money you have transferred from the bank account to the card. You can then, for example, insert your card into a soda machine, and if there are enough funds on it, you will get your drink.

Money, in the form of encrypted information, is transferred to the soda machine, leaving less on your card and preventing you from spending the same money twice. Periodically, the information from the drink dispenser goes to a clearinghouse computer (which could be located anywhere on Earth) that credits the owner’s bank account with the amount you spent. A credit card, by contrast, must immediately contact a central computer every time it is used, which can be slow and, for very small transactions, relatively expensive. By coincidence, the touchstone (the first tool extending our ability to conduct commerce) and the smart card (the most recent tool to do so) both contain silicon.

Money, checks, credit cards, and smart cards are all systems that extend our abilities. Beyond monetary systems are economic, legal, and business systems that also extend our abilities. Public and private organizations have countless linkages determining how they interact and cooperate. Look at a part of these systems in isolation and it will not make sense because its environment defines its behavior. And that environment is the system. We cannot understand technology without understanding its context.

Let’s come full circle to the touchstone. The touchstone is not an invention—it is a naturally occurring mineral containing silicon. Yet the system of information surrounding its use (such as how to interpret the results) could be called technology. So, could information alone be considered technology?  If so, the invisibility of information will make it harder for us to recognize new technologies that are largely or completely comprised of it.

This is not a new concept. As noted at the start of this chapter, the root meaning of technology, from Greek, is the study of a craft or art. In other words, it is the knowledge someone has of a practice, perhaps making pottery or sailing ships. Perhaps technology, then, is not just the tool that extends our abilities, but the whole system of tool and information about the tool.

 

One cannot really understand [technology]
without an understanding of the
roles, incentives, skill, and behaviors
that define its use.

– L.G. Tornatzky

Information:  The invisible ingredient

Take away the information that surrounds the physical artifacts we call technology, and they don’t work. That information specifies how to operate, manufacture, and repair, and ranges from ancient human techniques to modern computer code. You cannot always see those instructions, but knowing what to do is a critical component of technology.

Before Homer committed the story of the Iliad to writing in the 9th or 8th century BC, it was a song that included technological information, such as techniques for launching and landing ships. Recording information took a leap forward with writing, about 5000 years ago, and then again with the interchangeable type printing press almost 600 years ago.

In the 20th century, computers took on the role of manipulating and transmitting information. In fact, in a circular manner, they record information about the design of their successor computers. Engineers continue to design the next generation of technology by using the current one. At the end of the 20th century information sharing accelerated with the Internet.

Some technology is more information than material. For example, the cost to make one micro­processor is almost as much as the cost to make a thousand. The material cost of the silicon in a single microprocessor is nearly zero. The expense comes from manufacturing facilities, manufacturing setup, and research and development of the design. So the essence of a microprocessor is in how the few square centimeters of silicon is arranged into millions of tiny transistors.  A lump of silicon is almost worthless, but a microprocessor sells for hundreds of dollars. And the information that separates the two is worth billions (one microprocessor manufacturer, Intel, spends that amount each year on research and development).

In some technology, the material surrounding the information is nearly irrelevant. Microsoft earns billions of dollars selling compact discs and lots of empty space in cardboard boxes. The value of their software technology, which can sell for hundreds of dollars, is in the information represented on the discs, not in the material of the discs, which is worth pennies. And even those pennies can be eliminated from the mix. Many companies allow purchase of their software by downloading it over the Internet. The buyer provides information (credit card authorization) and the company provides information (software instructions for the buyer’s computer). No physical substance moves from the seller to the buyer. The technology is 100% information. And that invisible information we call “computer software” generates many billions of dollars in corporate revenues each year.

The fact that the technology can be 100% information also makes it easier to steal. Stealing 1000 cars is much harder than stealing one. However, making 1000 copies of pirated software is not much harder than making one. So, while the creators of information technology enjoy the economy of distributing their information, they also suffer from it.

This pattern of technology as information has a dark side, too. Weapons of mass destruction are sometimes classified as nuclear, chemical, or biological. Technologies in these categories have material and informational components. Those trying to limit proliferation of these have a much easier time controlling the material components because information moves so quickly and easily.

Years ago, publication of plans for an atomic bomb caused widespread concern. Fortunately, the critical materials are still hard to obtain. Nuclear technology was a huge advance in power, but if someone wished to use it—for instance, to blow up a city—that person needed refined radioactive materials. Although the collapse of the Soviet Union left some of its nuclear facilities vulnerable and countries such as North Korea are developing their own nuclear facilities, plutonium and similarly suitable materials are still much less accessible than information.

Chemical weapons use more commonly available materials, such as agricultural fertilizer. Publication or distribution of bomb recipes has made it easier for terrorists to create these. Although established terrorist networks can readily share this information, now any aspiring terrorist with an Internet connection can also easily obtain it, as we saw with the Oklahoma City bombing in 1995.

Biological weapons may be of greater concern than chemical because they can reproduce on their own. A bomb explodes once, but a plague can procreate and spread. Information about how to culture and reproduce disease agents (e.g. smallpox) is generally available. To avoid the danger, governments attempt to control the material component: strains of disease agents.

However, there is a more dangerous form of information concerning biological weapons technology:  genetic engineering. In the near future, a disgruntled university student could take public information about how to modify microorganisms (e.g. viruses) and then use what will be common laboratory equipment to create a plague for which we have no protection or cure.

Information is a large and growing component of technology. It moves easily in books, on computer discs, and over the Internet. When it is part of a technology we consider “good,” that speed benefits us tremendously. When it is part of a technology that threatens us, that speed undermines our control.

The trend appears to be toward information being more important than material in future technology. For example, nanotechnology (a new technology that we describe later) promises the capability of assembling almost any physical object from cheap, microscopic raw materials (e.g. the carbon atoms polluting our air). Companies could then sell the design for a toaster, bed, car, or almost anything. This information would be downloaded to a matter compiler, located anywhere, which would assemble the product, virtually out of “thin air.”  Today, that is still science fiction, but unless we become aware of this pattern of technology as information, we could still be hunting around for the tangible in a future that is all about information.

 

Not applied science

In the 1930s, a scientist at a dinner party used the back of a napkin to calculate whether a bumblebee’s wings were large enough to lift it off the ground. The preliminary answer was that if the wings were rigid like those of an airplane, then the bumblebee could not fly. However, the bumblebee tilts and strokes its flexible wings quite unlike an airplane, so the scientist left the party to figure out how to take these complicating factors into account. In his absence was born the myth that, according to science, the bumblebee cannot fly.

The myth is popular to this day because it is an apparent flaw in one of the most powerful forces of the modern world. If someone had said that patterns in tealeaves deny the bumblebee’s ability to fly, how many friends would you pass that on to?  For centuries, science has been the world’s leading source of truth, so it should not be surprising that some, including the 1949 edition of Webster’s dictionary as shown in the box above, define technology as the application of science.

We have plenty of evidence of this application of science. When we ride a bicycle, drive a car, or fly in an airplane, we are relying on engineers who relied on science. Science predicts how things will work, often more quickly and economically than waiting until it is built. For example, the Wright Brothers used a wind tunnel to experiment with designs for their airplanes. And today equations can replace many physical experiments. But there are two reasons this is a poor definition: (1) scientific understanding often follows the creation of a technology and, (2) when science is applied to developing technology, the process changes from science to engineering.

One example of science trailing technology: thousands of human generations chipped at stones to create wonderfully sharp knives before the laws governing fractures of solids were uncovered. Another example can be found in radios. The “crystals,” vacuum tubes, and transistors that made the first three generations of radios work were accidental discoveries, not applications of scientific knowledge:

  • Early radios were called “crystal sets” because the radio wave detector was a crystalline nugget of germanium, galena, or silicon. Getting them to work required probing the crystal with a wire until a signal came through and then keeping the wire pressed against that magic spot. This allowed electricity to flow in only one direction (rectification), but “crystal set” radios were used for years before the rectifying properties were identified, and they were not understood in a scientific sense until after the transistor was developed.
  • The vacuum tube came from the incandescent light bulb, in which Thomas Edison had noted what he called the “Edison Effect,” but saw little use for it. Others developed it into a rectifier and amplifier, indispensable components of radio, television, and computers.
  • The transistor came from crystal sets. Why these minerals rectified electricity was not understood scientifically, but Bell Laboratories thought they could improve on the vacuum tube (which, like their light bulb forebears, consumed lots of energy and easily burned out). That refinement of germanium and silicon crystals into transistors with precisely controlled amounts of impurities inspired scientific research into semiconductors, which led to integrated circuits and the boom in electronics and computers.

Science did lead the way in the discovery of germanium, if not its use in electronics. When Dmitri Mendeleev presented his periodic table of the elements in 1871, there was a gap between silicon and tin. His scientific approach told him that even if nobody had yet discovered it, there must be an element to fill that gap. Calling the as-yet-undiscovered element “eka-silicon,” Mendeleev accurately predicted its weight and properties well before 1886, when it was discovered in Germany and officially named “germanium.”

A more recent example: in 2001 Bell Labs created transistors so small that each used just a single molecule, so 10 million would fit on the head of a pin. The director of quantum-science research at Hewlett-Packard, Stan Williams, remarked, “They don’t have a clue how or why this works and I don’t have a clue how or why it works either.”  IBM’s director of physical sciences research, Thomas Theis, agreed:  “It appears to be a very interesting result, but nobody, including the authors of the paper, seems to fully understand what is going on here.”  Sometimes inventing is easier than explaining.

A second problem with defining technology as applied science lies in science being abstract and technology being concrete. Applied science bridges that gap, but it is only the bridge. The engineering process incorporates formulas and laws from science, but goes well beyond them in balancing costs and benefits. How strong does something need to be?  How long do we have to test it?  What are the costs of designing to far exceed the expected range of use?  These are practical questions that have little do with science and everything to do with actually making something useful.

We are not done with the Hawaiian bobtail squid. The light from its luminescent bacteria is reflected by platelets composed of an extraordinary protein named reflectin. Scientists are studying that protein to figure out how it works, which may help engineers create microscopic optical devices. So, even if the Hawaiian bobtail squid is not using technology, it may inspire some. We can appreciate the importance of science in arming our engineers in their quest to create useful things, but we are better off without an applied science definition of technology.

I don’t know who discovered water,
but I’m sure it was not a fish.

— Marshall McLuhan

Can you imagine trying to explain “water” to a fish?  You couldn’t point at water because, where fish live, it is everywhere. You have to stand apart from something to point at it. In the 21st century, technology is to humans as water is to fish. Opening the chapter with squid, two kinds of bacteria, sea otter, chimpanzee, crow, and beaver was a trick to get us to stand apart from technology and point at it.

What makes understanding and evaluating technology urgent is its rapid change, pointing to a future in which it will be even more powerful. Whatever your personal conclusions as to whether these or other animals use technology, it is clear that, so far, only humans have consciously changed it. Instinctual use allows tools to change only as quickly as instincts. Even imitative use, as chimpanzees and birds demonstrate, keeps tools relatively static. It is the dynamic nature of technology that makes it interesting. Carl Sagan would not have warned us of the “times of peril” had technology been frozen at the stage of stone tools.

But even as we collectively change technology, individually many of us are tricked into the myopia of equating computers and electronic equipment with technology. Those who can’t see beyond those current specimens are swept along. While fish have the choice of fighting the current or going with the flow, humans have the further option of guiding its course…if we are aware. And awareness is what this chapter is about. It sets the scope for investigations to come about our relationship with technology.

The definition tools that extend our abilities is an important step beyond computers and electronics. Both stone tools and technologies not yet invented fit this definition. To prepare our eyes for that yet to come, we recognize the modern trend of technologies fitting within ever more complex systems.

Perhaps many of the inventions that can stand apart from modern systems were long ago invented. For modern inventions, survival of the fittest is determined within an environment of systems. Recognizing technology as systems, the intangible levers, we are more likely to spot future developments. Other trends suggest that information, the invisible ingredient, is becoming ever more important in and as technology. Designing, manipulating information, pays better than manufacturing, manipulating material. Nanotechnology could one day automate manufacturing, making it so inexpensive that what we care about is the information in the design of technology, not the material.

While our criticism of “applied science” might be seen as an exception, our purpose in this chapter is not to arrive at a single, universal, eternal definition of technology. Rather, it is to provide some thought-provoking answers to the question, to help you come to your own definitions. Each of the nine chapters in this book has a similar goal. The question that heads each chapter is nearly timeless, but the answers cannot be—technology changes too quickly. Picking a single best answer would be no more than an intellectual exercise, so, instead, we offer context as a platform from which to launch.

 

This webpage is adapted from the book
Technology Challenged: Understanding Our Creations & Choosing Our Future
available at Amazon