3. Where Does Technology Come From?

An ape may on occasion use a stick
to beat bananas from a tree;
a man can fashion the stick into a cutting tool
and remove a whole bunch of bananas.
Somewhere in the transition between the two,
the hominid, or the first manlike species, emerges.
By virtue of his nature as a toolmaker,
man is therefore a technologist from the beginning,
and the history of technology encompasses
the whole evolution of man.

– Encyclopedia Britannica


Imagine a time when technology did not affect our lives, a time before the Internet, microprocessor, atomic bomb, and airplane. Those technologies take us back to the beginning of the 20th century, but we have to go farther back…before the automobile, telephone, light bulb, electric generator, steam engine, telescope, printing press, and clock. That takes us back before the 2nd millennium, but we have to go farther back…before the plow, wheel, lever, and stone tools.

That time, when technology did not live with us—changing how we live—predates history. It is hard to imagine 2.6 million years, so we compress it to just one year, ending today, illustrated on the next page.

Just as January 1 opens our imaginary year, we invent stone tools. Later that month, around about the 29th, we invent the wedge, useful for prying things apart. These technologies are enough to keep us busy—refining and improving, maybe even losing and rediscovering—until the afternoon of October 22, when we perfect the trick of starting and controlling fire. Or at least that was when we first leave enough evidence to convince later archeologists of our accomplishment (long before this we made use of naturally occurring fires). Good job, everyone. Take the rest of the year off. December will be busy.

Christmas Eve we invent the bow and arrow to hunt. Less than a week later, on December 30, we create wind musical instruments, but we save everything else for the next day. Before dawn on that last day of our imaginary year, we invent the plow and the wheel, so we’re producing food surpluses and soon carting them about. Those food surpluses allow for specialization of labor, so before lunch we plumb our first bathroom and, at lunch, invent glass.

A minute before quitting time on December 31—4:59 PM—we find our bearings with the magnetic compass and decide there’s more to do. By 8:30 PM, a mechanical clock tells us how late it’s getting. By 10:41 it is quite dark, and we view the stars with a telescope. The steam engine and electric battery appear around 11:15. With less than half an hour left to go in the year, we shrink the world with telephone, automobile, and airplane. The power of the atom succumbs to our investigations at 11:48.

Ch3 calendar of tech

The epidemic spread of the integrated circuit and microprocessor start a few minutes later, leaving us just a couple of minutes to experience the World Wide Web. Then, in the very last minute we develop the ability to create artificial life, a 300-gene virus, assembled gene-by-gene in a laboratory. For ethical and moral reasons, we postpone its actual creation, but we do finish decoding our own genome.

Oh yes, in the final nanoseconds (each billionth of a second corresponding to about one of our real days), you start reading this book, which answers questions including, “Where does technology come from?”  And to this question, we offer five answers. Technology comes from:

  1. Other technology
  2. Dense populations
  3. Specialization
  4. Plan or Accident
  5. Protection.

Technology comes from other technology. In a sense, stone tools made possible all technology that would follow. While we cannot make a microprocessor with stone tools, we could not make one now if stone tools had not started the process. Stone tools had to be somewhere before the axes and spears, sewing needles, rope, pottery, fishing nets, and baskets. With stone tools, we were able to make better stone tools and also sharpen or carve wooden tools. With those, we made still better tools, slowly at first, but accelerating to and through the present day.

Even the idea of creating technology must have been easier to conceive once we started using stone tools. Of course the same is true for many technologies that extend our physical abilities to create and spark our thoughts of something similar but better.

Dense populations accelerated the pace of innovation near the end of our calendar. Early on, with tool-using humans grouped in small, dispersed bands, one invention had little chance of being seen by another inventor who might improve upon it. If one person invents the hand ax and another person is skilled at lashing things together, their combination could result in a conventional ax with handle (giving it the lever advantage we enjoy today). But, if those two people are isolated, neither benefits from the discoveries of others. No synergy. Progress is made only by repeated advances within each community.

Specialization further accelerated innovation.  Coming just before dawn on the last day of our calendar, the plow created a surplus of food, allowing us to specialize. When everyone needs to hunt and gather in order to eat, then crafting pots, knives, and other tools can only be done in spare time. But agriculture created a surplus, allowing some to exchange part of that surplus for technology made by specialists. Those specialists had time to create all sorts of new technologies, including those making agriculture more efficient. This creates yet more surplus and opportunity to develop even better technology. Feeding on itself, this process has led to the point that farmers, once representing near 100% of every society, now represent just a tiny percentage of the developed world—2.5% of the U.S. population.

Both plan and accident have always fostered innovation. We have stumbled across inventions (probably the first stone tools) and pursued them (the atomic bomb during World War II). It is, of course, hardly profound to say that technology is either intentional or it is not. More interesting are the characteristics of the environments that contribute to one rather than the other. Some environments focus resources on planned development. For example, war led to both the atomic bomb and the modern pencil “lead.”  Other environments allow a diversity of efforts, which can result in more accidental discoveries. The laser is an example. Developed in a peacetime free market, it was invented to create very high frequency radio waves. No one anticipated using it to read music from compact discs or reshape corneas for better sight.

If you spend resources on inventing a new technology, you might prefer that someone else not steal your idea. If the threat of losing out on the benefits you feel you deserve is strong enough, you might not go to the trouble of inventing in the first place. Protection through patents and similar government intervention are intended to encourage innovation by assigning rights to the information behind inventions.

Two factors now make the protection of information increasingly important to the creation of technology. First, information travels ever more quickly around our world and, second, ever more technology is composed mostly of information. The value of both computer software and engineered drugs is less their raw materials (e.g. a compact disc or pill) than their design (the development of which constitutes most of the technology’s cost). Awareness of this pattern is important in unraveling the debates about unauthorized music sharing and about the costs of AIDS drugs in the developing world.

Understanding where technology comes from is part of our quest to understand and evaluate technology. This chapter’s question is one of the four blocks in the foundation of Identity (along with what is it, why we use it, and how it works). Part of being able to understand and evaluate technology is the ability to encourage innovation in our organizations or communities. The patterns we discover in where technology comes from are not passing fads. In fact the first one has been in play for millions of years.


Thirty thousand years ago,
chipping flint was the
high technology of the day.

– Eric Drexler

Other Technology

Apes and birds use sticks as tools. Chimpanzees throw stones and use them to crack open nuts. But there is a crucial difference between the stone tools of our ancestors and sticks or simple stones. Stone tools have intentional shape, usually a sharp edge. With sharp edges, stone tools can sharpen sticks into spears, slice animal hides into clothing, or cut animal sinew with which to sew those hides together. Stone tools can create other tools, which can create still more tools, leading to a cascade of improvements.

Few stones lying around have sharp edges useful for cutting. We can create such an edge, though, by striking stones together. A chimpanzee can do this if trained, as scientists demonstrated by presenting Kanzi, a talented Bonobo chimpanzee in captivity, with a food treat enclosed in a box tied with rope. They demonstrated how to hit two stones together to flake off pieces, some of which were sharp enough to cut the rope. Kanzi learned this and even tried his own technique of throwing one stone against the other.

What Kanzi did not learn is something that we did two million years ago. Randomly smashing rocks together, which also happens in nature when they fall from cliffs or rivers pound them together, does not produce good cutting edges. To get those, you must study a stone to figure out the best angle of striking. Then, with each strike breaking off flakes, you must adjust your angle.

Few humans have that skill today, but we would have the cognitive ability to develop it if we needed it. Over months of training, Kanzi—who can do something as sophisticated as tying his shoelaces—did not develop it. What he created with human coaching was like the very first stone tools we have found. The first three steps in our development of stone tools were:

  • Stone chips (3 to 2 million years ago)  These often look similar to rocks broken by natural causes (e.g. crashed into each other by a rushing river).
  • Olduwan stone (2 to 1.5 million years ago)  They are clearly intentional because the flakes and the core pebble from which they came are found together.
  • Handaxes and Levallois flakes (1.4 million to 250,000 years ago)  Easily recognizable as tools, handaxes—what we would call an “ax head”—would later evolve into a more familiar ax when strapped to a wooden handle. Levallois flakes showed forethought because the technique involved careful preparation of the core of a rock in order to get cutting flakes of a predictable size.

Building on itself, the tool-making process blossomed to transform our world, but it is hard for us to imagine how slowly this transformation began. In the 21st century, some technology changes every few years. If a computer comes with half the memory you want, just wait two years for the next model. It will have double the memory (and processor speed and disk size) at the same price. Or, get the old model at near half the price.

We are becoming accustomed to technology flowing like a swift river, with improvements arriving constantly. Waiting thousands of years for a small improvement in technology would seem, to us, forever.

Before stone tools existed, they must have been very difficult to imagine. Further, they were not trivial to make. A trained chimp, capable of much else, apparently lacks the hand coordination and mental forethought to chip stones into the specialized tools made by our ancestors. But once the tool-making process started, it built on itself. Tools made it easier, both physically and mentally, to create better tools.

Physically, the tools gave us capability, such as sharpening sticks, which our bare hands did not provide. Mentally, the tool showed us by analogy what might be created. The more examples of tools we saw, the more likely we might think up another. Today, invention often comes of imagining something “a little like this thing and a little like that.”  Seeing that music or other audio can be recorded on cassette tapes and CDs suggests that video should not be restricted to VHS tapes. Hence, the DVD (which looks just like a CD).

This mental and physical effect is in play today. Computers extend our brain as stone tools extended our brawn, so we may be able to apply our insights from ancient history to the present. Physically, new computers allow us to design tens of millions of transistors onto a chip of silicon the size of a postage stamp. These chips will power the next generation of computers, allowing design of even more complex circuits.

Mentally, computers have become our starting point for wondering, “what’s next?”  Computers model a whole new form of tool, one that operates on information, follows rules, and even appears to think. When the computer Deep Blue beat world chess master Gary Kasporov in 1997, it was applying rules, millions each second. Manipulating huge amounts of information is becoming commonplace, and people learning about their environment today will assume that capability as a basic building block toward new technology.

If advances in technology came about, in part, because stone tools were seen as basic building blocks, then we may, by analogy, expect fantastic technologies in the future from those who now view computers as basic building blocks. It is hard to imagine what will be created when the most fantastic technology we have today is taken as a given, just a starting line.

While it is hard for us to imagine being ignorant of basic tools, it is easy to imagine being ignorant of missiles, acids, and bombs. How long would it take us to figure them out if we were left on our own?


Seeding the Crystal

How could developing stone tools have been so slow?  Were humans that much less intelligent back then?  In answer to that question, consider the island of Tasmania and an old TV show, MacGyver. As anywhere, Tasmania suffered from occasional famine. Unusual, however, was that for about 4000 years Tasmanians, surrounded by rich oceans, did not fish. They did not think of fish as “food,” much as most Americans and Europeans rarely think of insects as food, even though people in many parts of the world recognize them as highly nutritious.

Now, on to MacGyver, the television show about a resourceful hero who uses a paper clip to short-out a nuclear missile, a chocolate bar to plug an acid leak, and a cold capsule to trigger a homemade bomb. What did he have that most people with easy access to paper clips, chocolate bars, and cold capsules lack—other than life-threatening situations every week?  Information. Most of us lack information about missiles, acid, and bombs just as the Tasmanians lacked information about fish. Similarly, before we invented stone tools, we lacked information about stone tools—a seed for technology.

Our vast interrelated network of technology is like a crystal. The molecular components of crystals can float around in liquid (non-crystalline) form until they come in contact with a “seed” crystal. This seed is literally a few molecules that have already been stacked into a crystal structure. These cause more molecules to come out of solution, adding themselves to the structure. Integrated circuits are made from a giant silicon crystal grown from a tiny silicon seed. Stone tools may have been the conceptual seed from which all technology since has grown.

The key to the next source of technology is that we are not left on our own. We share ideas and build on each other’s ideas. The more contact we have with each other, the more likely one person’s idea will trigger someone else’s improvement. One effect of stone tools—which helped us survive by helping us hunt and by protecting us from predators and the elements—was population growth. And that led to denser populations.


More and denser population
means more advanced technology.

– Robert Wright

Dense populations

One good technology leads to another. Even Thomas Edison, one of the most prolific inventors of all time, built on the inventions of others. The first incandescent light bulb was invented in 1802; Edison was born in 1847; he invented the first practical incandescent light bulb in 1879. His bulbs did not quickly burn out for two primary reasons. First, he tested variations on the earlier filaments, finding some that resisted burning. And, second, he used the latest and best vacuum pumps to evacuate the air that would have allowed the filaments to burn.

But what if Edison had been isolated from the many earlier bulbs and from advances in vacuum technology?  What would he have invented?  And even if he had been brilliant enough to invent these precursors and then proceed to his light bulb, what about the technologies on which those precursors were built?  As we just saw, those go all the way back to stone tools. Fortunately for Edison and those of us who enjoy something brighter than candlelight, he lived in an age when dense populations transmitted knowledge of inventions far and wide.

Ch3 innovation chain reaction

For a simpler illustration consider the hand-ax, which is a sharpened stone cradled in the hand. These have been around for about 400,000 years. Someone—or, actually, many different, isolated people—invented them. Eventually, others figured out that attaching them to a handle of wood or bone protected your fingers from being smashed and provided a lever for applying greater force. The axes we buy in a hardware store all have handles.

Did the same person who invented the hand-ax also think to attach a handle?  No, not unless he or she lived for 380,000 years: the technology of hafting, or slotting a handle to cradle a stone ax head, is just 20,000 years old. Some people invented hand-axes; others invented hafting. The denser the population, the easier knowledge of one invention could be communicated to the potential inventor of the next.

When populations are sparse, ideas don’t bump up against each other as readily. When Europeans discovered Australia in the 18th century, they found the native aborigines living as pre-agricultural hunter-gatherers. But southeast of Australia on the island of Tasmania, native technology was even more primitive, comparable to what Europeans had in the Stone Age more than ten thousand years ago. While Australians had at least hooks, nets, and the ability to both sew and start a fire, the Tasmanians lacked even these. Tasmanians also lacked bone tools, something developed 90,000 years earlier in Zaire (as harpoons) and 40,000 years earlier nearly everywhere else.

Why did the indigenous peoples of Australia and Tasmania not develop technology common in other parts of the world?  One answer is that they lacked the dense populations that would have allowed easier sharing of information. Australia had about 300,000 people and Tasmania about 4000. With a smaller “communal memory,” it is more difficult to connect two seemingly unrelated facts into a new technology.

It is even possible to forget technology. Archeologists have found bone tools, needles, and tools for fishing from about 3500 years ago on Tasmania, but none more recently. In his book Guns, Germs, and Steel, Jared Diamond presents the theory that technology once used on Tasmania was lost.

Chain Reaction

An analogy from physics is a nuclear reaction. In a power plant, the uranium atoms, which constitute the fuel, emit high-speed particles, which strike other uranium atoms, causing them to emit more particles. Inserting rods, which simply absorb the high-speed particles, preventing them from triggering further emissions, controls this chain reaction. Translate high-speed particles to new inventions and rods to geographic isolation.

In Tasmania, you might have been a genius, but if the other 3999 Tasmanians were not clever in just the right way, your invention would progress only as far as you pushed it. No chain reaction. Unlike high-speed particles, technology can have long lives. As long as enough people value a technology, it can be replicated by succeeding generations, waiting for the next clever inventor. But if even a single generation loses interest or the ability to fabricate it, it can be lost, just like a high-speed particle shooting off into space.

Population grew, in part, because spears, sewn clothing, axes, and other technologies protected us from claws and cold. In his book Non-Zero: The Logic of Human Destiny, Robert Wright theorizes that population density in Africa and Eurasia began to increase about 40,000 years ago because the growing population ran out of empty, habitable land, and was forced to simply pack in closer. Around this cusp, the rate of technological change increased from one major innovation every 20,000 years to one every 1400. Another cusp was reached about 12,000 years ago, about when the harvest sickle and fired clay pottery were invented. With proto-agriculture and the means to store surplus, the rate increased to one every 200 years.

In California’s Silicon Valley, Massachusetts’ Route 128, and other geographic concentrations of technology companies, we find a similar relationship. The density of talent allows for ideas to trigger other ideas. Employees jump from one company to another, cross-pollinating as they go. Nearby universities provide basic research and even more ideas. Companies merge and combine technology, paying a premium to be located in these centers of innovation with their density of ideas and talent.

In this section, we care about dense population only because it facilitates communication. But technology now does that independent of geography. The printing press shared ideas across Europe and then beyond. Radio and television made this one-way communication far faster, and telephones and the Internet made it two-way. New technology is making our interactions even more “just like being” there. And so more innovation will be spurred by virtually—not geographically—dense populations.


Again and again, people with access to
the prerequisites for food production,
and with a location favoring diffusion
of technology from elsewhere,
replaced peoples lacking these advantages.

– Jared Diamond


More than 10,000 years ago, the advent of agriculture became the most important creator of dense populations. Ten to 100 times as many farmers than hunter-gatherers can survive in a given area, but agriculture had a much more interesting effect on human society than simply allowing it to become denser. It gave birth to the specialist, who often earned his or her food by developing and creating technology.

The last Ice Age peaked about 18,000 years ago, and its waning forced us to adapt to a new environment. Rising oceans reclaimed vast coastal areas that the earlier Ice Age had exposed (one estimate submerges 40% of all the land that was dry during the Ice Age). Jungles heated up and dried out. Grasslands replaced the dense forests that had been full of animals to hunt. The area of southwest Asia we know as the “Fertile Crescent” looked anything but fertile to our hunter-gatherer ancestors. Grasses were not food for humans…and then they were, after two things happened completely beyond the understanding of anyone at that time.

First, two plants crossed genetically, creating a mutation. The fertile combination of wild wheat and a natural goat grass provided a grain sufficiently plump to be worth harvesting. Our ancestors supplemented their diet with it and, eventually, must have learned how to plant it, too, because they were ready to exploit the second surprise.

This surprise—a second mutation—arrived about 2000 years after the first one. It made the wheat even plumper and more attractive, but so tightly packed that it was no longer able to re-seed itself with wind alone. If humans had not already learned how to sow seeds, the new mutation would have died out. But it had something we wanted:  a big, nutritious seed. And we had something it needed:  the technique of spreading and planting its seed. By helping it survive, we changed it. By breaking us from the often-nomadic life of hunting and gathering, the wheat changed us.

Around 10,500 years ago in southwest Asia, our harvesting of wild cereal grains became what we might call agriculture. Less than a thousand years later it developed in China. In the New World, it played a lesser role, probably because fewer native crops were as attractive for cultivation (corn and little barley, but no wheat or rice, which were key in southwest Asia and China). The symbiotic relationship that is agriculture changed technology, which spread to and affected neighbors.

We had used our sickles, baskets, and grinding tools to plant, harvest, and process wild cereal grains, but that genetically altered wheat led to countless more tools because it allowed us to produce surplus. If you have a surplus, you can trade. You need to store it, probably in the clay pots invented 12,000 years ago. How do you keep track of who produced which food and who is trading what with whom?  Our answer was with writing, at first carved into clay, later on papyrus and then paper.

Since you want to protect the surplus, you may need soldiers with weapons. The surplus also fed a government that coordinated everything and craftspeople that developed improved tools for planting (e.g. the plow), harvesting, storing, fighting, and worshipping (which left the biggest artifacts, such as pyramids). The greater the surplus, the more people could specialize in something other than farming…so long as that activity produced something that people wanted. Specialization focused us on improving our tools.

Without surplus and specialization, improving tools is done in spare time. However, if your entire job is to create tools, you are much more likely to figure out how to improve them. Then, the improvements can start building on each other, accelerating technological progress. Ancient Egypt built these technologies atop agriculture:


Irrigation canals: Agriculture. Water trapped in reservoirs during the annual flood was distributed by canal to the fields during the ensuing drought.

Plow: Agriculture. Improved prior methods of opening the land by hand or sharp stick in order to plant crop seeds.

Calendar: Agriculture. Prediction of the seasons was critical for knowing when to plant seeds. Observing annual patterns in weather gave the Pharaoh seemingly god-like powers of predicting the annual flood of the Nile River basin.

Wheel: Agriculture in the form of the potter’s wheel (3500 B.C.) to make containers for grain. Also used for transportation on funeral vehicles (in Sumeria), though not for building the pyramids, where skids were used for dragging the giant blocks.

Writing implements: Communication and keeping track of food stores and transactions (writing on wet clay led to papyrus in 2500 B.C.)

Loom:                           Shelter and clothing.

Cutting tools:               Building (canals and pyramids) and for making other tools.

Simple metallurgy:      Making metal tools and for religion (jewelry, decoration).


Stone tools let us create better tools, denser populations helped us share ideas, and agriculture gave us surplus, allowing us to specialize and create even more surplus, more tools, more wealth. How do we apply that wealth?  What technologies result from it?  At times we direct it toward a single objective. At other times we seem to all go off in different directions, and then select the best results. Both approaches are active today, with war often focusing resources and peace diversifying them.


Plowing It Back In

Agriculture made development of these technologies possible because its surplus could be reinvested. By analogy, consider a simple bank investment with interest. If the interest is plowed back in the investment grows exponentially. One hundred dollars invested with a 10% return becomes $110 after one year, $121 after two, $133.10 after three, and $259.37 after 10.

Agriculture plows its surplus back in by spending it on specialists who develop improved, more efficient technology. This creates greater surplus, which can be plowed back towards even greater technological development, and so on.


Either history is a series of
individual and unrepeated acts
which bear no relation to anything
other than their immediate and
unique temporal environment,
or it is a series of events triggered
by recurring factors which manifest
themselves as a product of
human behavior at all times.

– James Burke

Plan or Accident

Near the end of the 18th century, when war with Britain cut France off from high-quality graphite mines, French scribes could have been reduced to quills and inkwells. Government and commerce relied on scribes to write down laws, transactions, agreements, and plans. And they did this most efficiently with graphite wrapped in wood, commonly known as a “pencil.”  Napoleon declared the invention of an alternative pencil to be a national priority.

In 1795, Nicolas-Jacques Conté, combined readily available lesser-quality graphite with clay to produce a superior pencil “lead.”  Not only did this save French wartime administration and commerce, but this new pencil lead proved even better for writing than pure graphite because varying the proportion of the two ingredients controlled its hardness. For the first time, artists could have their soft pencils and architects their hard ones.

Finding a good alternative to pure graphite was quite intentional, but the benefit of varying lead hardness was an accident. Much technology comes accidentally. Earlier in this chapter we mentioned the laser and its unexpected application to reading CDs and eye surgery.

Plan and accident also work in combination. The transistor was a planned improvement on the vacuum tube. But the inventors of the transistor based their work on the germanium crystal rectifier, which was discovered entirely by accident decades earlier. The first radios were “crystal” radios, based on the germanium crystal rectifier, and in use long before the first vacuum tube or transistor (something we touched on in Chapter 1).

Another example:  by chance, Alexander Fleming discovered penicillin, the first antibiotic, in 1928. Production was minuscule until World War II, when thousands wounded in battle were dying of infections that could be cured by it. By plan, production then became a factory operation:  28 pounds were produced in 1943 but seven tons were in 1945.

In a story that returns us to Napoleon, plan led to accident. In his continuing international adventures, he needed better food supplies for his far-ranging troops, so he announced a national prize for a solution. Nicholas Appert claimed it in 1810 by stuffing empty champagne bottles with fruits, vegetables, milk, and meat before sealing and cooking them. The heat killed bacteria and “bottled” food fed French armies and navies.

Through several coincidental meetings and relationships, bottled food led to Bryan Donkin and several other British entrepreneurs, who replaced the glass champagne bottles with tin cans. Nearly two centuries later, canned food is still common.

Technology comes from both plan and accident. Plan may focus resources on goals, but, before we’ve invented something, we often don’t know just how to do it or whether that something is possible and even desirable. Chance works with a diversity of explorations, so that many can fail while a few produce surprising results.


Tactics of Bacteria and the Drugs They Battle

The development of technology by plan and chance are comparable to the different approaches taken by pharmaceutical manufacturers and the infectious bacteria they develop drugs to attack. Drug development is typically focused on attacking a particular disease. In response, the bacteria have no focus or central plan.

In their diverse multitude, bacteria simply mutate and trade genes with other bacteria. Natural selection culls out the trillions of unfit and rewards the fitter millions. Because the bacteriological strains resistant to our treatment no longer have to compete with their relatives we killed, they can reproduce into their original trillions. And so medicine goes back to the laboratory to develop a new weapon. Evolution led to the intelligence that focuses resources, and it continues to operate by pitting rapidly mutating bacteria, evolving a diversity of possibilities, against that intelligence.

Several of our examples for plan have come from war, which focuses resources to support grand plans. The Cold War contained the Space Race, which focused Soviet and American resources as a conventional war would have. It kicked off in 1957 with the Soviet Union launching Sputnik, the first earth-orbiting satellite, and started to wind down in 1969 when the U.S. landed men on the moon.


At base, the momentum for the arms race
is undoubtedly fueled by the technicians
in government laboratories and in the
industries which produce the armaments.

— Solly Zuckerman


Some suspect that war is used as an excuse to develop technology. The “war on terrorism” of the early 21st century focused resources on surveillance and information technologies such as the U.S. government’s “Total Information Awareness” system. It was quickly renamed the “Terrorist Information Awareness” system to assure the public that, although everyone’s activities would be monitored, the system would not be used against the innocent. The war on terrorism is also leading to renewed development of nuclear weapons—this time for routing terrorists out of deep bunkers or mountain caves—and for a missile defense shield.

While plan may result in focus, and hence efficiency, a diversity of efforts gives us the most chances at valuable accidents. Silicon Valley, in California, is known for thousands of start-up companies, pursuing wildly varying ideas—often failing, but sometimes succeeding. The successful companies are lauded, inspiring others to copy them. The failures make for even more entertaining discussion and reading, helping others to learn from those companies’ mistakes. Once someone tries something, others can observe whether it should be copied, improved upon, or avoided.

For example, before developing its nuclear power industry France observed what the U.S. had accomplished by “accident.”  A diversity of competing power companies in the U.S. developed many different nuclear plant designs. The cost to certify and build these often-custom jobs was high, limiting their appeal. The French government focused the approach, mass-producing just three types of power plants, and provided financing. Now, nuclear plants supply approximately 75% of French electricity, but little more than 20% of U.S.

A relatively free market in which a diversity of people, organizations, or countries can pursue their own aims makes for many fruitful accidents. Some opportunities may require focus of resources, so diversity and focus complement each other to develop technology out of accident and plan. In our lives, we will observe environments of focus and of diversity. History shows us how they differ as sources of technology. Because our decisions influence which environments will emerge, it benefits us to know when to choose the efficiency of focus and when to choose the resilience of diversity.


Congress shall have power…
to promote the progress of science
and useful arts, by securing for
limited times to authors and inventors
the exclusive right to their respective
writings and discoveries.

– Article 1, Section 8 of the U.S. Constitution


You spend much of your life pursuing a dream of a better mousetrap. Through research, trial, and error, you finally devise a design that makes all existing mousetraps appear primitive by comparison. You show your design to those who might finance its manufacture, but to your horror, they make and sell the new mousetraps without your control and without sharing the profits. It would be enough to make inventors give it all up and leave the world to get by without technological improvements, leaving the “pirates” with nothing to pirate.

Recognizing how fragile the investment in developing new technology can be, Venice created a patent system in 1474 and England did so in 1624. Just as the patent system in the U.S. today, these granted a temporary monopoly on creation of a specified invention.

In theory, this encourages more development by protecting the investment. And there is a further benefit of publicly documenting an invention. It allows other innovators to learn from the design and make improvements significant enough that they warrant their own patents. Either way, society reaps the reward of increased technology development. In practice, patents can also inhibit development of technology. A broad patent protects so much that many potential inventions would infringe upon it, discouraging anyone other than the patent holder from developing them (see sidebar Yertle the Turtle).

The incandescent light bulb that Thomas Edison patented in 1879 shows the value of patents in promoting innovation. Edison tested 3000 different filaments before finding that carbonized cotton thread did not quickly burn out. With a patent for the design he developed, he produced light bulbs.

Patents are crucial for technology with high information content. The development of a new drug costs about a quarter of a billion dollars (including a share of the developments that failed), but very little to manufacture. Without patent protection, no one would dare invest because a competitor could simply copy the research to avoid most of the cost and all of the risk. Patents give some assurance that pharmaceutical companies will be able to charge much more for each pill than it costs them to make it, so they can reward the investment that went into its development and fund further development.

And, by and large, the patent system has worked. Over the past few centuries, those areas with protection of intellectual property have been major sources of technology. But to ensure that it does not stifle innovation, technology protection must evolve with technology.


Yertle the Turtle

In Dr. Seuss’ children’s book Yertle the Turtle, a turtle with delusions of grandeur believes that he is owner of all he can see. As the dominant turtle, he compels the other turtles of the pond to stack themselves skyward to afford him a higher throne, broader view, and greater kingdom. The moral comes when Yertle’s reach exceeds his grasp, his tower becomes unstable, and he comes tumbling down into the pond. Covered with the muck from the bottom of the pond, discovers that he can see nothing else.

While Yertle had been able to maintain his claim to the pond by whatever means a dominant turtle remains dominant, with respect to the many lands beyond the pond, he confused seeing with owning. Similarly, protection of intellectual property can confuse an event (identifying) with a process (developing). Technology comes from an environment that protects its development, not merely its identification.

Patent attorney Dennis Fernandez came up with the idea of television viewers seeing each other and discussing a shared program. Fernandez has a U.S. patent for televisions with cameras that would show both a program and a headshot of another viewer, who could be far away. Although he is also an electrical engineer, he has no plans to actually make one or more of these devices. He is satisfied owning the intellectual property rights so that anyone who does try to make one would have to pay him. This patent protects someone who identifies something and discourages anyone who would develop it.

Two extreme cases of “Yertle the Turtle” patents are for the wheel (U.S. 5,707,114) and the genetic code for a person living in a remote area of Papua New Guinea (U.S. 5,397,696). These are not “rewards” for investing in the development of new technology, but the equivalent of squatting on public land and claiming it as ones own.

In biotechnology, gene sequences have been covered under patents, even though they are not inventions and their function may not yet be known. Some scientists complain that this departs from the intent of patents to promote innovation because it allows someone to “squat” on a gene sequence without developing scientific knowledge about its function. This discourages others from developing that knowledge.

Without a commitment to develop, those who lay claim to an area of information, whether the design of the wheel or the DNA of a person, are just blocking innovation. Even during the 19th century land rush in the U.S., when the government awarded 160 acres of land to whoever staked it out first, only those still working the land after five years received title.



Innovation occurs for many reasons including greed,
ambition, conviction, happenstance, acts of nature,
mistakes, and desperation. But one force above all
seems to facilitate the process. The easier it is
to communicate, the faster change happens.

— James Burke

Easier communication leads to faster change because information fuels innovation. In each of the sources of technology in this chapter we find the thread of information.

Other technology gives us greater physical capability to create new technology, but because it gives us examples of what is possible, suggesting combinations or analogous technologies, it also conveys information. Inquisitive minds see not only the tool, but the information presented by the tool. The tool may be useful for a different task or, since this tool does, indeed, exist, then an even better tool could also exist. The information in the tool points toward new applications and new technology

Improvements in technology were at first isolated and sporadic, but as populations grew denser, information about technology (and anything useful) reached more people. Communication cascades as the information that one person shares with ten others is passed on to a hundred more in a chain reaction of development. Information about how to create and use technology can even loop back to the original inventor, who may improve upon the improvements. Today, advances in communication technology gives us many of the same benefits of dense populations.

Specialization, made possible by surplus, leads to diverse technology, each of which is surrounded by information. Carpenter, potter, metal smith, and alchemist developed their own vocabularies in the dawn of agriculture, much as scientists, technicians, engineers, and other specialists have in our current era. We use this vocabulary to describe and design ever more sophisticated technology, which, like denser populations, is a process that feeds on itself by creating the need for more specialized information.

Both plan and accident are also about information. The “plan” of planned innovation is simply information about objectives and resources to be used in developing a technology. And accidents create information by revealing patterns in the Universe of which we were unaware—which sometimes lead to new technology. Some environments are particularly suited to creating information through accidents (e.g. peacetime free market) and then focusing resources to exploit that information (e.g. war). Penicillin was accidentally discovered in peacetime and then, by plan, manufactured in useful quantities during World War II.

Patent protection gives property rights over information about an invention and publicizes that information. This makes the investment in innovation more attractive and can give other innovators new ideas. As information becomes a greater component of technology (e.g. software and engineered drugs), technology becomes easier to copy and protecting it becomes that much more important. But as information travels more quickly and easily around the world, protecting it becomes more difficult. And protection can also inhibit innovation by assigning broad rights for discoveries rather than developments.

There are countless sources of technology, provided one is willing to delve deeply enough into the details. But for our purposes, these answers are specific enough. In the previous chapter on why we use technology, we made the point that our intent is not to create an exhaustive list but rather to clarify the question, to give it context. For in our quest to understand and evaluate technology, it is the questions that have enduring value since new times and new technologies will bring new answers. The answers in this chapter are a starting point, not an encyclopedia from which all answers will come.

One benefit of being able to understand and evaluate technology is that we know how to promote development of technology. We may find ourselves in position to influence our environment, perhaps by voting on a law, leading an organization, or developing a school curriculum. The patterns in this chapter, drawn from the millions of years we have had technology, can inform the decisions we make.


This webpage is adapted from the book
Technology Challenged: Understanding Our Creations & Choosing Our Future
available at Amazon